

NOvA Electronics/DAQ

Leon Mualem
University of Minnesota

Outline

- Electronics WBS structure
- Recent work in Electronics
- DAQ WBS structure
- Recent work in DAQ
- Open tasks

Electronics Organization

- Documentation task
- Major Subsystems
 - APD Modules
 - Readout Modules
 - Readout Infrastructure

Electronics Concept

APD Modules

- APD Module Task
 - APD

1.6.5

- Mounting
- Packaging
 - Alignment
 - Isolation

Front-End Readout options.

- Two options have been considered for the design of the front-end readout the APD.
- Continuous Digitization
 - 100% live
 - Allows for SuperNOvA triggers
 - Decouples spill trigger delivery
- Pipelined
 - No Digital Activity during acquire—quiet
- Prototype chip will do BOTH

Continuous Digitization

32 channel front end ASIC

- (4x) 8:1 Analog multiplexers
- Each runs at 16 MHz
- 62.5 ns settling time per channel
- 500 ns equivalent sampling time

SCA

Digitize Later

Fast Digitization Mode.

- Variants on the standard operation are included in the design.
 - Direct in to latch.
 - Non-linear ramp.
 - Complete digitization in 400 nsec.

Front-End ASIC Status

- Design complete.
- Full simulations complete. Calculated noise level with 10 pf and 250 nsec shaping is 150 electrons. Reality: expect ~200.
- Layout of one SCA channel complete
- Layout of Control and MUX readout started
- Plan is to submit chip combining all readout options for November MPW run.

DAQ Organization

- 1.7 Readout/DAQ
 - 1.7.1 System Definition
 - **1.7.2** DAQ
 - 1.7.3 Timing/Clock
 - 1.7.4 Slow Control
 - 1.7.5 Management

- Documentation task
- Major Subsystems
 - DAQ/Readout
 - Readout Box -> Enstore
 - Timing/Clock/Spill
 - Sync 500ns digitization clocks
 - Produce/Receive Spill times
 - Slow Control
 - Run control
 - State information, HV, cooling,

. . .

Issues for DAQ

- Large number of isolated independent elements –23808 modules with APD boxes
 - Modules don't have enough information to determine interesting events
 - Large background of uninteresting events
 - 99.9% of events are "spare" muons not needed for calibration
- Physically large detector 16m x 16m x 132m
- Remote location –Spill trigger communication

Recent Work in DAQ

- 5-24-2005 Addition of several enthusiastic former BTeV collaborators augments creates "NOvA DAQ group"
 - Mark Bowden, Jerry Guglielmo, Vince Pavlicek,
 Margaret Votava, ...
- 7-15-2005 Created a DAQ conceptual design for preliminary director's review

- Driven by cosmic muons, ~250kHz, leading to ~400Hz/channel or 12kHz/module rate
 - 120kB/module/s
 - But 23,808*120kB/s=~3GB/s

Buffering Requirements

- Asynchronous spill trigger requires only 1-2 seconds of buffering
- Buffering driven by Supernova Triggering requiring up to 20 seconds of buffer
 - Most significant signal comes early, so maybe less would be okay

- Subdivide detector into segments
 - 16, 8 each in X and Y
 - Distributes buffering and triggering
 - Each is roughly a giant 16m cube with relatively few muons going between cubes
 - Do simple track finding in cubes to eliminate muon hits
 - Tally number of coincidences from remainder
 - Trigger if threshold met, or timing (in-spill or random) is satisfied

DAQ Diagram

A Plan B

Network Buffering Options

DAQ Parameters

- Buffering locations
 - Front end, switch, fan-in
- Time Slicing
- Segmentation
- Optimize Available Bandwidth

Lots of knobs, lots of decisions

Open Electronics Tasks

Readout Infrastructure

- Low Voltage
 - 5W*25,000=125kW
 - 25kW quiet, 100kW not so quiet
 - Reliable

HighVoltage

- 400V*1nA*800,000=0.32W, very quiet
- Reliable

Cooling

- Heat sinking 125kW
- Reliable

Open DAQ Tasks

- DAQ
 - Optimizing time slice, segmentation
 - Efforts at FNAL
 - Supernova Triggering
 - Efforts begun at Harvard
- Timing/Clock/Spill
 - Synchronize digitization
 - Synchronize clocks
 - Send spill times
- Slow Control
 - Run Control
 - HV, Temp setting/readback
 - Record run conditions